maplab: An Open Framework for Research in Visual-inertial Mapping and Localization


Robust and accurate visual-inertial estimation is crucial to many of today’s challenges in robotics. Being able to localize against a prior map and obtain accurate and driftfree pose estimates can push the applicability of such systems even further. Most of the currently available solutions, however, either focus on a single session use-case, lack localization capabilities or an end-to-end pipeline. We believe that only a complete system, combining state-of-the-art algorithms, scalable multi-session mapping tools, and a flexible user interface, can become an efficient research platform.

We therefore present maplab, an open, research-oriented visual-inertial mapping framework for processing and manipulating multi-session maps, written in C++. On the one hand, maplab can be seen as a ready-to-use visual-inertial mapping and localization system. On the other hand, maplab provides the research community with a collection of multisession mapping tools that include map merging, visual-inertial batch optimization, and loop closure. Furthermore, it includes an online frontend that can create visual-inertial maps and also track a global drift-free pose within a localization map. In this paper, we present the system architecture, five use-cases, and evaluations of the system on public datasets. The source code of maplab is freely available for the benefit of the robotics research community.

In IEEE Robotics and Automation Letters (accepted)