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Abstract—Directional estimation is a common problem in many
tracking applications. Traditional filters such as the Kalman filter
perform poorly in a directional setting because they fail to take
the periodic nature of the problem into account. We present
a recursive filter for directional data based on the Bingham
distribution in two dimensions. The proposed filter can be applied
to circular filtering problems with 180 degree symmetry, i.e.,
rotations by 180 degrees cannot be distinguished. It is easily
implemented using standard numerical techniques and is suitable
for real-time applications. The presented approach is extensible
to quaternions, which allow tracking arbitrary three-dimensional
orientations. We evaluate our filter in a challenging scenario and
compare it to a traditional Kalman filtering approach.

Index Terms—angular quantities, circular data, directional,
statistics, recursive filtering

I. INTRODUCTION

Many estimation problems involve the task of estimating
angular values. These problems include, but are not limited
to, estimating the pose or orientation of objects. For example,
tracking cars, ships, or airplanes may involve estimation of their
current orientation or heading. Furthermore, many applications
in the area of robotics or augmented reality depend on reliable
estimation of the pose of certain objects. When estimating the
orientation of two-way roads or relative angles of two unlabeled
targets, the estimation task reduces to estimating an axis. This
can be thought of as estimation of a directionless orientation or
estimation with 180◦ symmetry. All these estimation problems
share the need for processing angular or directional data, which
differs in many ways from the classical Euclidean setting. First,
periodicity needs to be taken into account. This is especially
important for measurement updates around 0, respectively 2π.
Second, directional quantities do not lie in a vector space. Thus,
there is no equivalent to a classical linear model, as there are
no linear mappings.

In many applications, even simple estimation problems
involving angular data are often considered as traditional linear
or nonlinear estimation problems and handled with classical
techniques such as the Kalman Filter [1], the extended Kalman

Filter (EKF), or the unscented Kalman Filter (UKF) [2]. In a
circular setting, most traditional approaches to filtering suffer
from assuming a Gaussian probability density at a certain point.
They fail to take into account the periodic nature of the problem
and assume a linear vector space instead of a curved manifold.
This shortcoming can cause poor results, in particular when
the angular uncertainty is large. In certain cases, the filter may
even diverge.

Classical strategies to avoid these problems in an angular
setting involve an “intelligent” repositioning of measurements
or even discarding certain undesired measurements. Sometimes,
nonlinear equality constraints have to be fulfilled, for example
unit length of a vector, which makes it necessary to inflate the
covariance [3]. There are also approaches that use operators
on a manifold to provide a local approximation of a vector
space [4]. While these approaches yield feasible results, they
still suffer from ignoring the true geometry of circular data
within their probabilistic models, which are usually based on
assuming a normally distributed noise. This assumption is
often motivated by the Central Limit Theorem, i.e., the limit
distribution of a normalized sum of i.i.d. random variables
with finite variance is normally distributed [5]. For angular
data, this is not the case. Choosing a circular distribution for
describing uncertainty can offer better results.

In this paper, we consider the use of the Bingham distribution
[6] for recursive estimation of orientation. The Bingham distri-
bution is defined on the hypersphere of arbitrary dimension,
so it can be applied to problems of different dimensionality.
Here, we focus on the two-dimensional case and apply our
results to axis estimation. To the best of our knowledge, this
is the first published attempt to create a recursive filter based
on the Bingham distribution.

The presented methods can also be applied to the four-
dimensional case, which would allow the representation of
unit quaternions. Unit quaternions could then be used to
estimate the full 3D orientation of an object. It is well
known that Quaternions avoid the singularities present in other



representations such as Euler angles. Their only downsides are
the fact that they must remain normalized and the property
that there are two quaternions for every rotation (q and −q).
Both of these issues can elegantly be overcome by use of the
Bingham distribution, since it is by definition restricted to the
hypersphere and is 180◦ symmetric.

This paper is structured as follows. First, we present an
overview of previous work in the area of directional statistics
and angular estimation (Sec. II). Then, we introduce our key
idea in Sec. III. In Sec. IV, we give a detailed introduction to the
Bingham distribution and we derive the necessary operations,
which we will need to create a recursive Bingham filter. Based
on these prerequisites, we introduce our filter in Sec. V. We
have carried out an evaluation in simulations, which is presented
in Sec. VI. Finally, we conclude this work in Sec. VII.

II. RELATED WORK

Directional statistics is a subdiscipline of statistics, which
focuses on dealing with directional data. Classical results in
directional statistics are summed up in the books by Mardia and
Jupp [7] and by Jammalamadaka and Sengupta [8]. Directional
statistics differs from traditional statistics by the fact that
random variables located on manifolds (for example the circle
or the sphere) are considered rather than random variables
located in vector spaces (typically Rd).

There is a broad range of research for investigating the 2D
orientation, e. g., the work by Krindis et al. [9]. A recursive
filter based on the von Mises distribution for estimating the
orientation on the SO(2) was presented in [10]. Later, a
nonlinear filter based on von Mises and wrapped normal
distributions was presented in [11]. This filter takes advantage
of the fact that wrapped normal distributions are closed under
convolution and the fact that von Mises distributions are closed
under Bayesian inference. Later, it will be compared to the
proposed filter.

In 1974, Bingham proposed his distribution in [6]. Further
work on the Bingham distribution has been done by Kent
[12], [13] as well as Jupp and Mardia [14]. So far, there have
only been a few applications of the Bingham distribution,
for example in geology [15], [16]. In 2011, Glover used the
Bingham distribution for a Monte Carlo based pose estimation
[17]. Glover also released a library called libbingham [18] that
includes implementations of some of the methods discussed
in Sec. IV. It should be noted that our implementation is
not based on libbingham. Our implementation calculates the
normalization constant online whereas libbingham relies on
values that have been precomputed offline.

III. KEY IDEA OF THE BINGHAM FILTER

The goal of this paper is the derivation of a recursive filter
based on the Bingham distribution. Rather than relying on
the traditional Gaussian distribution, we chose to represent
all occurring probability densities as Bingham. The Bingham
distribution is defined on the hypersphere and is antipodally
symmetric, which makes it interesting for applications in
angular estimation with inherent 180◦ symmetry and for

problems where 180◦ symmetry occurs as a result of parame-
terization, e.g., in the case of quaternions. Although we restrict
ourselves to the two-dimensional case in this paper, we would
like to emphasize that most of presented methods are easily
generalized to higher dimensions.

In order to derive a recursive filter, we need to be able
to perform two operations. First, we need to calculate the
predicted state at the next time step from the current state and
the system noise affecting the state. In a traditional estimation
problem in Rd with additive noise, this involves a convolution
with the noise density. We provide a suitable analogon on
the hypersphere, which we call composition. Since Bingham
distributions are not closed under compositions, we present
an approximate solution to this problem based on matching
covariance matrices.

Second, we need to perform a Bayes update. As usual,
this requires the multiplication of the prior density with
the likelihood density. We prove that Bingham distributions
are closed under multiplication and show how to obtain the
posterior density.

IV. BINGHAM DISTRIBUTION

The Bingham distribution appears naturally when a d-
dimensional normal random vector x with E(x) = 0 is
conditioned on ||x|| = 1 [19]. In the following, we will
introduce the Bingham distribution and derive the formulas for
multiplication of two Bingham probability density functions.
Furthermore, we will present a method for computing the
composition of two Bingham-distributed random variables,
which is analogous to the addition of real random variables.

A. Probability Density Function

Definition 1. Let Sd−1 = {x ∈ Rd : ||x|| = 1} ⊂ Rd be the
unit hypersphere in Rd. The probability density function (pdf)

f : Sd−1 → R

of a Bingham distribution [6] is given by

f(x) =
1

F
· exp(xTMZMTx) ,

where M ∈ Rd×d is an orthogonal matrix (MMT =
MT M = Id×d) describing the orientation, Z =
diag(z1, . . . zd−1, 0) ∈ Rd×d with z1 ≤ · · · ≤ zd−1 ≤ 0 is
the concentration matrix, and F is a normalization constant.

As Bingham showed, adding a multiple of the identity
matrix Id×d to Z does not change the distribution. Thus, we
conveniently force the last entry of Z to be zero. Because it is
possible to swap columns of M and the according diagonal
entries in Z without changing the distribution, we can enforce
z1 ≤ · · · ≤ zd−1. This representation allows us to obtain the
mode of the distribution very easily by taking the last column
of M.

The pdf is antipodally symmetric, i. e., f(x) = f(−x) holds
for all x ∈ Sd−1. Consequently, the Bingham distribution is
invariant to rotations by 180◦. Examples of the pdf for two
dimensions (d = 2) are shown in Fig. 1 and Fig. 2. The
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Fig. 1: Bingham pdf with M = I2×2 and Z = diag(−8, 0) as
a 3D plot. This corresponds to a standard deviation of 16◦.
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Fig. 2: Bingham pdf with M = I2×2 for different values of
Z = diag(z1, 0) and x = (cos(θ), sin(θ))T . These values for
z1 correspond to standard deviations of approximately 36◦,
16◦, and 6◦, respectively.

Bingham distribution is very similar to a Gaussian if and only
if the uncertainty is small. This can be seen in Fig. 3, which
shows the Kullback-Leibler divergence between a Bingham
pdf and a corresponding Gaussian pdf.

B. Normalization Constant

The normalization constant can be calculated with the help
of the hypergeometric function of a matrix argument [20], [21],
[22]. It is given by

F := |Sd−1| · 1F1

(
1

2
,
d

2
,Z

)
,

where |Sd−1| is the surface area of the d-sphere and 1F1(·, ·, ·)
is the hypergeometric function of matrix argument. In the
two-dimensional case (d = 2), this reduces to

F = 2π · 1F1

(
1

2
, 1,

(
z1 0
0 0

))
= 2π · 1F1

(
1

2
, 1, z1

)
,

so it is sufficient to compute the hypergeometric function of a
scalar argument, which is described in [23].
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Fig. 3: Kullback-Leibler divergence on the interval [0, π]
between a Bingham pdf with M = I2×2, Z = diag(z1, 0)
and a Gaussian pdf with equal mode and standard deviation.
For small uncertainties (z1 < −15, which corresponds to a
standard deviation of about 11◦), the Gaussian and Bingham
distributions are almost indistinguishable. However, for large
uncertainties, the Gaussian approximation becomes quite poor.
Note that this curve is smooth in reality and that the jitter is
caused by the fact that a Monte Carlo method was used to
create this plot.

C. Multiplication

For two given Bingham densities, we want to obtain
their product. This product is used for Bayesian inference
involving Bingham densities. The result presented below yields
a convenient way to calculate the product of Bingham densities.

Lemma 1. Bingham densities are closed under multiplication
with renormalization.

Proof. Consider two Bingham densities

f1(x) = F1 · exp(xTM1 Z1 M
T
1 x)

and
f2(x) = F2 · exp(xTM2 Z2 M

T
2 x) .

Then

f1(x) · f2(x) = F1F2 · exp(xT (M1Z1M
T
1 + M2Z2M

T
2 )︸ ︷︷ ︸

=:C

x)

∝ F · exp(xTMZMTx)

with F as the new normalization constant after renormalization,
M are the unit eigenvectors of C, D has the eigenvalues
of C on the diagonal (sorted in ascending order) and Z =
D−DddId×d where Ddd refers to the bottom right entry of
D, i. e., the largest eigenvalue.

D. Estimation of Parameters

Estimating parameters for the Bingham distribution is not
only motivated by the need to estimate noise parameters from
samples. It also plays a crucial role in the prediction process
when computing the composition of two Bingham random



vectors. This procedure is based on matching covariance
matrices. Be aware that although the Bingham distribution
is only defined on Sd−1, we can still compute its covariance
in Rd. Thus, we will present both the computation of the
covariance matrix of a Bingham distributed random vector and
the computation of parameters for a Bingham distribution with
a given covariance (which could originate from an arbitrary
distribution on the hypersphere).

The maximum likelihood estimate for the parameters (M,Z)
of a Bingham distribution can be obtained as described in
[6]. M can be obtained as the matrix of eigenvectors of the
covariance S with eigenvalues ω1 ≤ ω2. In other words, M can
be found as the eigendecomposition of S = M · diag(ω1, ω2) ·
MT . To calculate Z, the equations

∂
∂zi 1

F1

(
1
2 , 1,

(
z1 0
0 z2

))
1F1( 1

2 , 1, z1)
= ωi, i = 1, 2

have to be solved under the constraint z2 = 0, which is
justified by the argumentation above and used to simplify
the computation. This operation is performed numerically.

Conversely, for a given a Bingham distribution (M,Z), the
covariance matrix can be calculated according to

S = M · diag(ω1, ω2) ·MT

= M · diag

(
1

F

∂F

∂z1
,

1

F

∂F

∂z2

)
·MT

=

2∑
i=1

1

F

∂F

∂zi
M(:, i)M(:, i)T ,

where M(:, i) refers to the i-th column of M [18]. Thus, any
Bingham distribution is uniquely defined by its covariance
matrix and vice versa. The following Lemma simplifies the
computation of partial derivatives of a confluent hypergeometric
function of a 2 × 2 matrix argument, which is used in
computation of the covariance matrix as derived above.

Lemma 2. For d = 2, the partial derivatives

∂

∂zi
1F1

(
1

2
, 1,

(
z1 0
0 z2

))
, i = 1, 2

can be reduced to hypergeometric functions of scalar argument.

Proof. See Appendix A.

E. Composition

Now, we want to derive the composition of Bingham
distributed random variables, which is the directional analogue
to adding random variables. This operation can, for example, be
used to disturb an uncertain Bingham-distributed system state
with Bingham-distributed noise, similar to using a convolution
to disturb a probability distribution on R with additive noise.
First, we define a composition of individual points on the
hypersphere Sd−1, which we then use to derive the composition
of Bingham distributions.

The composition of two Bingham distributions depends on
the interpretation of the unit vectors, for example as complex
numbers or quaternions. We assume that a composition function

⊕ : Sd−1 × Sd−1 → Sd−1

is given. The function ⊕ has to be compatible with 180◦ degree
symmetry, i.e.,

±(x⊕ y) = ±((−x)⊕ y) = ±(x⊕ (−y)) = ±((−x)⊕ (−y))

for all x, y ∈ Sd−1. Furthermore, we require the quotient
(Sd−1/{±1},⊕) to have an algebraic group structure. This
guarantees associativity, the existence of an identity element,
and the existence of inverse elements.

In the complex case, we interpret S1 ⊂ R2 as unit vectors
in C, where the first dimension is the real part and the
second dimension the imaginary part. In this interpretation, the
Bingham distributions can be understood as a distribution on
a subset of the complex plane, namely the unit circle.

Definition 2. The composition function ⊕ is defined to be
complex multiplication, i.e.,(

x1
x2

)
⊕
(
y1
y2

)
=

(
x1y1 − x2y2
x1y2 + x2y1

)
analogous to

(x1 + ix2) · (y1 + iy2) = (x1y1 − x2y2) + i(x1y2 + x2y1) .

Since we only consider unit vectors, the composition ⊕ is
equivalent to adding the angles of both complex numbers when
they are represented in polar form. The identity element is ±1
and the inverse element for (x1, x2) is the complex conjugate
±(x1,−x2).

Unfortunately, the Bingham distribution is not closed under
this kind of composition. That is, the resulting random vector
is not Bingham distributed. Thus, we propose a technique to
approximate a Bingham distribution to the composed random
vector. The composition of two Bingham distributions fA
and fB is calculated by considering the composition of their
covariance matrices A,B and estimating the parameters of
fC based on the resulting covariance matrix. Composition of
covariance matrices can be derived from the composition of
random vectors. Note that since covariance matrices are always
symmetric we can ignore the bottom left entry and mark it
with an asterisk.

Lemma 3. Let fA and fB be Bingham distributions with
covariance matrices

A =

(
a11 a12
∗ a22

)
and B =

(
b11 b12
∗ b22

)
,

respectively. Let x, y ∈ S1 ⊂ R2 be independent random vec-
tors distributed according to fA and fB. Then the covariance

C =

(
c11 c12
∗ c22

)
:= Cov(x⊕ y)



of the composition is given by

c11 =a11b11 − 2a12b12 + a22b22 ,

c12 =a11b12 − a12b22 + a12b11 − a22b12 ,
c22 =a11b22 + 2a12b12 + a22b11 .

Proof. See Appendix B.

Based on C, maximum likelihood estimation is used to
obtain the parameters M and Z of the uniquely defined
Bingham distribution with covariance C as described above.
This computation can be done in an efficient way, because the
solution of the equation involving the hypergeometric function
is the only part which is not given in closed form. This does not
present a limitation to the proposed algorithm, because there
are many efficient ways for the computation of the confluent
hypergeometric function of a scalar argument [24], [25].

V. FILTER IMPLEMENTATION

The techniques presented in the preceding section can be
applied to derive a filter based on the Bingham distribution.
The system model is given by

xk+1 = xk ⊕ wk ,

where wk is Bingham distributed noise. The measurement
model is given by

zk = xk ⊕ vk ,

where vk is Bingham distributed noise and xk is an uncertain
Bingham distributed system state. Intuitively, this means that
both system and measurement model are the identity disturbed
by Bingham distributed noise. Note that wk and vk can include
a constant offset. For example, wk could include a known
angular velocity. Alternatively, to avoid dealing with biased
noise distributions, a rotation may be applied to xk first and
unbiased noise added subsequently.

The predicted and estimated distributions at time k are
described by their parameter matrices (Mp

k,Z
p
k) and (Me

k,Z
e
k)

respectively. The noise distributions at time k are described by
(Mw

k ,Z
w
k ) and (Mv

k,Z
v
k).

A. Prediction

The prediction can be calculated according to

(Mp
k+1,Z

p
k+1) = composition((Me

k,Z
e
k), (Mw

k ,Z
w
k )) ,

which uses the previously introduced composition operation to
disturb the estimate with the system noise.

B. Update

Given a measurement ẑ, we can calculate the updated
distribution according to Bayes’ rule

f(Mk,Zk|ẑ) = c · f(ẑ|Mk,Zk) · f(Mk,Zk)

with some normalization constant c, which yields the update
procedure

(Me
k,Z

e
k) = multiply((M,Zek), (Mp

k,Z
p
k))

Input: estimate Me
k,Z

e
k, noise Mw

k ,Z
w
k

Output: prediction Mp
k+1,Z

p
k+1

/* calculate covariance matrices A,B */

A =
∑d
i=1

1
F
∂F
∂zi

Me
k(:, i)Me

k(:, i)T ;
B =

∑d
i=1

1
F
∂F
∂zi

Mw
k (:, i)Mw

k (:, i)T ;
/* calculate C according to Lemma 3 */
c11 = a11b11 − 2a12b12 + a22b22;
c12 = a11b12 − a22b12 − a12b22 + a12b11;
c22 = a11b22 + 2a12b12 + a22b11;

C =

(
c11 c12
c12 c22

)
;

/* calculate Mp
k+1,Z

p
k+1 based on C */

Mp
k+1,Z

p
k+1 ← MLE(C);

Fig. 4: Algorithm for prediction step.

Input: prediction Mp
k,Z

p
k, noise Mv

k,Z
v
k, measurement

ẑk

Output: estimate Me
k,Z

e
k

/* rotate noise according to
measurement */

M←
(
¯̂z ⊕Mv

k

)
;

/* multiply with prior distribution */
(Me

k,Z
e
k)← multiply((M,Zvk)), (Mp

k,Z
p
k));

Fig. 5: Algorithm for update step.

with M = (¯̂z⊕Mv
k), where ā indicates the complex conjugate

of a and ⊕ is evaluated for each column of Mv
k.

VI. EVALUATION

The proposed filter was evaluated in simulations. In this
section, all angles are given in radians unless specified
differently.

For comparison, we implemented a one-dimensional Kalman
filter [1]. A traditional one-dimensional Kalman filter has two
issues when confronted with our situation. First, it does not
take the circular nature of the problem into account. Second,
it does not handle 180◦ symmetry. We can circumvent both
issues by restricting the estimate xk according to 0 ≤ xk ≤ π
and by shifting the measurement, so that |xk − ẑk| ≤ π

2 is
satisfied.

In our example, we consider the estimation of an axis in
robotics. This could be the axis of a symmetric rotor blade
or any robotic joint with 180◦ symmetry. We use the initial
estimate with mode (0, 1)T

Me
0 =

(
1 0
0 1

)
, Ze0 =

(
−1 0
0 0

)
,



the system noise with mode (1, 0)T

Mw
k =

(
0 1
1 0

)
, Zwk =

(
−200 0

0 0

)
,

and the measurement noise with mode (1, 0)T

Mv
k =

(
0 1
1 0

)
, Zvk =

(
−3 0
0 0

)
.

The true initial state is given by (1, 0)T , i. e., the initial estimate
with mode (0, 1)T is very poor. The initial estimate for the
Kalman filter is given by

xe0 = atan2(mode(Me
0)) = atan2(1, 0) =

π

2

and the noise means are

µwk = µvk = atan2(0, 1) = 0 .

The covariance matrices for the Kalman filter are obtained
by sampling the Bingham noise parameters and calculating the
empirical covariance from the samples. This yields

Ce0 = 0.5956, Cwk = 0.0027, Cvk = 0.2836 ,

which is equivalent to standard deviations of 44◦ for the first
time step, 3◦ for the system noise and 30◦ for the measurement
noise.

We simulate the system for a duration of kmax = 100 time
steps. An example run is depicted in Fig. 6. In addition to the
mode of the estimate, we plot the 95% confidence interval,
which is equivalent to the 2σ bounds in the case of the Kalman
filter.

For evaluation, we consider the angular RMSE which is
given by √√√√ 1

kmax

kmax∑
k=1

(ek)2

with angular error

ek = min(](xtrue
k ,mode(Me

k)), π − ](xtrue
k ,mode(Me

k))

at time step k. Obviously, 0 ≤ ek ≤ π
2 holds, which is

consistent with our assumption of 180◦ symmetry.
The presented results are based on 1000 Monte Carlo runs.

Even though our filter is computationally more demanding than
a Kalman filter, it is still fast enough for real-time applications.
On a standard laptop, our non-optimized implementation
in MATLAB needs approximately 60 ms for one time step
(prediction and update), which could be significantly improved
by a faster evaluation of the hypergeometric function. In Fig. 8,
we plot the error of our filter against the error of the Kalman
filter for all runs. The proposed filter outperforms the Kalman
filter in most cases, which is also true for the mean angular
error in every time step as shown in Fig. 7. In particular, the
significantly faster rate of convergence of the proposed filter
is evident. This superiority is due to the reasons listed in the
introduction. The use of the Gaussian distribution, which does
not consider the problem geometry leads to suboptimal results
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Fig. 8: Results of 1000 Monte Carlo runs. Each sample
represents one run. Samples below the red line indicate that
the proposed filter has performed better, samples above the red
line indicate that the Kalman filter has performed better.

compared to the proposed approach based on the Bingham
distribution.

In Fig. 7, we also show a comparison with a filter based
on the wrapped normal distribution (denoted WN), which we
previously published in [11] and modified for the 180◦ case.
This modification was done by a simple rescaling technique
mapping the angles between 0◦ and 180◦ to the full circle.
The angular error of both filters is almost indistinguishable.
However, unlike the proposed filter based on the Bingham
distribution, the previously published filter cannot easily be
generalized to higher dimensions.

VII. CONCLUSION

We have presented a recursive filter based on the Bingham
distribution. It can be applied to circular estimation problems
with 180◦ symmetry. Our simulations have shown the supe-
riority of the presented approach compared to the traditional
solution of modifying a Kalman filter for the circular setting.

Future work will focus on recursive 3D pose estimation using
Bingham distribution. This can be achieved by applying the
presented methods in the four-dimensional case for estimating
quaternions. Open challenges include an efficient estimator of
the Bingham parameters based on available data. This makes
an efficient evaluation of the confluent hypergeometric function
necessary.
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(a) Ground truth and estimate.
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Fig. 6: An example run of Bingham and Kalman filter.
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(a) Time steps 1 ≤ k ≤ 100.
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Fig. 7: Results of 1000 Monte Carlo runs. We show the mean error at every time step across all runs for the proposed Bingham
filter, a Kalman [1] filter and a filter based on the wrapped normal (WN) distribution [11]. Because the initial error is large as
a result of the poor initial estimate, we show two plots of different time intervals.

APPENDIX

A. Proof of Lemma 2.

Proof. We use the identities

1F1

(
1

2
, 1,

(
z1 0
0 z2

))
= exp(z2) · 1F1

(
1

2
, 1, z1 − z2

)
and

∂

∂z
1F1(a, b, z) =

a

b
1F1(a+ 1, b+ 1, z) .

The partial derivative with respect to z1 is given by

∂

∂z1

F

|Sd−1|
=

∂

∂z1
1F1

(
1

2
, 1,

(
z1 0
0 z2

))
= exp(z2)

∂

∂z1
1F1

(
1

2
, 1, z1− z2

)
= exp(z2)

1

2
1F1

(
3

2
, 2, z1− z2

)
.

The partial derivative with respect to z2 is calculated in a
similar fashion. We calculate

∂

∂z2

F

|Sd−1|
=

∂

∂z2
1F1

(
1

2
, 1,

(
z1 0
0 z2

))
=

∂

∂z2

(
exp(z2)1F1

(
1

2
, 1, z1 − z2

))
= exp(z2)1F1

(
1

2
, 1, z1 − z2

)
+ exp(z2)

∂

∂z2
1F1

(
1

2
, 1, z1 − z2

)
= exp(z2)1F1

(
1

2
, 1, z1 − z2

)
− exp(z2)

1

2
1F1

(
3

2
, 2, z1 − z2

)



and obtain

∂

∂z2

F

|Sd−1|
= exp(z2)

(
1F1

(
1

2
, 1, z1 − z2

)

− 1

2
1F1

(
3

2
, 2, z1 − z2

))

B. Proof of Lemma 3.

Proof. The covariance of the composition

C = Cov(x⊕ y)

= Cov

((
x1y1 − x2y2
x1y2 + x2y1

))
=

(
Var(x1y1 − x2y2) Cov(x1y1 − x2y2, x1y2 + x2y1)

∗ Var(x1y2 + x2y1)

)
can be obtained by calculating the matrix entries individually.
For the first entry we get

c11 = Var(x1y1 − x2y2)

= E((x1y1 − x2y2)2)− (E(x1y1 − x2y2))2

=E(x21y
2
1 − 2x1y1x2y2 + x22y

2
2)

− (E(x1y1)− E(x2y2))2 (1)

= E(x21) E(y21)− 2 E(x1x2) E(y1y2) + E(x22) E(y22) (2)

− (E(x1)︸ ︷︷ ︸
0

E(y1)︸ ︷︷ ︸
0

−E(x2)︸ ︷︷ ︸
0

E(y2)︸ ︷︷ ︸
0

)2 (3)

=a11b11 − 2a12b12 + a22b22 .

We use independence of x and y in (1), linearity of the
expectation value in (2) and symmetry of the Bingham in
(3). Analogously we calculate

c22 = Var(x1y2 − x2y1)

= E((x1y2 − x2y1)2)− (E(x1y2 − x2y1))2

=E(x21y
2
2 − 2x1y1x2y2 + x22y

2
1)

− (E(x1y2)− E(x2y1))2

= E(x21) E(y22)− 2 E(x1x2) E(y1y2) + E(x22) E(y21)

− (E(x1)︸ ︷︷ ︸
0

E(y2)︸ ︷︷ ︸
0

−E(x2)︸ ︷︷ ︸
0

E(y1)︸ ︷︷ ︸
0

)2

=a11b22 − 2a12b12 + a22b11 .

The off-diagonal entry can be calculated similarly

c12 = Cov(x1y1 − x2y2, x1y2 + x2y1)

= E((x1y1 − x2y2) · (x1y2 + x2y1))

− E(x1y1 − x2y2) · E(x1y2 + x2y1)

= E(x21y1y2 − x1x2y22 + x1x2y
2
1 − x22y1y2)

− (E(x1) E(y1)− E(x2) E(y2))

· (E(x1) E(y2) + E(x2) E(y1))

=a11b12 − a12b22 + a12b11 − a22b12 .

Because C is a symmetrical matrix, this concludes the proof
of Lemma 3.
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