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Abstract— Deployment of camera and laser based motion
estimation systems for controlling platforms operating at high
speeds, such as cars or trains, is posing increasingly challenging
precision requirements on the temporal calibration of these
sensors. In this work, we demonstrate a simple, low-cost system
for calibrating any combination of cameras and time of flight
LIDARs with respect to the CPU clock (and therefore, also
to each other). The newly proposed device is based on widely
available off-the-shelf components, such as the Raspberry Pi
3, which is synchronized using the Precision Time Protocol
(PTP) with respect to the CPU of the sensor carrying system.
The obtained accuracy can be shown to be below 0.1 ms per
measurement for LIDARs and below minimal exposure time per
image for cameras. It outperforms state-of-the-art approaches
also not relying on hardware synchronization by more than a
factor of 10 in precision. Moreover, the entire process can be
carried out at a high rate allowing the study of how offsets
evolve over time. In our analysis, we demonstrate how each
building block of the system contributes to this accuracy and
validate the obtained results using real-world data.

I. INTRODUCTION

Multi-sensor systems that involve cameras and LIDARs,
e.g. for motion estimation, are ubiquitous in robotics re-
search. An easy to use, fast and reliable method to ac-
quire accurate and high frequency estimates about when
sensors actually take measurements and the reliability of
their hardware timestamps, while being independent of any
other spatial or intrinsic calibration, has the potential to
save a lot of tedious calibration work and errors. This is
particularity true for research systems that contain large
numbers of different sensors. Furthermore, as the underlying
algorithms and concepts for such multi-sensor systems grow
more mature, these systems are about to hit the market
in diverse end-user products. An example of this is in the
automotive field, where a combination of multiple cameras
and LIDARs are typically used for autonomous driving
and advanced driver assistance systems. Furthermore, recent
developments in LIDAR technology and strong interest from
industry, promise wider availability of this sensor type and a
further reduction in prices. This means that the availability
of multi-sensor setups is likely to significantly increase in
the future. When these setups are utilized on high speed
platforms (such as cars, trains or multi-copters), or used to
jointly perceive highly dynamic environments, precise time
synchronization becomes a critical aspect. Experience with
multi-sensor fusion shows that un-modeled delays can have
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Fig. 1. The setup for LIDAR-to-CPU temporal calibration. When a LIDAR
beam hits the photo diode a hardware interrupt is triggered on the Raspberry
Pi and a low latency timestamp is assigned and sent to the PC.

a strong impact on the performance of motion estimation
systems [1]. Unfortunately, most multi-sensor systems are
not always hardware synchronized, particularly when low-
cost sensors and commodity personal computers are used.
And even if hardware synchronization is available, there may
still be unknown offsets with respect to the synchronization
signal.

The current state-of-the-art in multi-sensor timing calibra-
tion usually addresses the problem either by exploiting co-
observed motion [2], [3] within self-calibration approaches,
or using hardware synchronization signals [4], [1]. Motion
based methods require a large amount of data to achieve
millisecond precision (down to about 0.1 ms with targets
such as a checker board, in laboratory environments [1])
and their accuracy is highly dependent on the motion.
They also have no means to observe the offset between a
sensor and the computer’s system time. Hardware signal
based methods demand suitable sensors that support this
functionality (excluding many low cost camera systems,
among others) and additional wiring to every sensor. Our
work targets cases where hardware synchronization is not
possible or too expensive, or where additional means for
validation or inspection are required. This work is motivated
by the observation that the use of simple external devices
involving LEDs (for cameras) or photo diodes (for LIDARs)
can result in significantly improved performance in com-
parison to motion based approaches. While this comes at
the cost of an extra device, the gain in high rate and high
accuracy estimates of the timing offsets can be particularly
useful to optimize the exploitation of hardware or receive
timestamps. Our approach can also serve as an accurate
benchmark (ground truth) for better / easier evaluation of
self-calibration algorithms. The proposed device is based on
a Raspberry Pi 3 which is connected either to several LEDs
for temporal camera to CPU calibration or a photo diode



for LIDAR to CPU calibration. PTP is used for precise time
synchronization between the calibration device and the CPU
of the system to which the sensors are attached. Overall, this
work makes the following primary contributions

• A system for calibrating the time offset between the
actual camera exposure taking place and the correspond-
ing image timestamp (hardware clock and arrival).

• A system for calibrating the time offset between LIDAR
timestamps and actual measurements.

• An evaluation of the accuracy and precision obtained
using the two systems and 5 popular sensors, and
validation for both based on hardware signals.

• A free and open source, ROS compatible C++ library
to simplify hardware time related tasks for authors
of device drivers, such as translating timestamps, and
providing the user with tuning and inspection options.
Inspection tools and several modified device drivers are
also provided.1

II. RELATED WORK

To the best of our knowledge very little has been published
about temporal sensor calibration using external devices. The
only example we are aware of is [5] in which the authors
use a single LED flashed at known system time (through a
microcontroller) together with a high speed camera recording
at 100 Hz This could be considered a simpler version of
our LED-signaler device. The fundamental problems with a
single LED are first, the achievable accuracy is limited by
the maximum of exposure time and LED flash duration -
as for most simple approaches with LEDs, and second the
smaller this maximum is, the less probable it is that an LED
is flashed during the camera exposure.

Two-way synchronization methods like TICSync [6], PTP
[7], or NTP perform well but require support by the sensor’s
firmware, which is rare and expensive.

TriggerSync [4] operates by exploiting co-observation
of simultaneous trigger signals. This is a great practical
solution for online sensor synchronization if the sensors have
trigger or synchronization inputs and very accurate when
one of the sensors has very low latency or the main CPU
has low latency direct inputs such as a RS-232 port [8].
Unfortunately many setups do not match these requirements.
This is especially true in the case of LIDARs. Furthermore,
the estimation rate is limited for similar reasons to the single
LED approach above, due to the ambiguity that occurs when
the trigger rate is high. This problem makes it a) even more
restrictive regarding the sensors that can be used, when they
are supposed to take measurements at a higher rate than
the trigger rate, and b) less useful as a tool to analyze
the statistical properties of the individual delays. A further
difference is that TriggerSync must rely on the sensors
handling hardware synchronization correctly, whereas our
approach is directly based on the physical act of taking a
measurement.

1https://github.com/ethz-asl/cuckoo_time_
translator/ (BSD-3-Clause)

Target-less self-calibration methods such as described in
[2] or [3] rely on the same motion being observed in
different sensors to find their relative offsets. This typically
require many seconds of sensor data to reach a precision
of milliseconds. This limitation means that these approaches
cannot analyze the short term stability of the transport and
processing delays or accuracy / stability of sensor’s hardware
timestamps. Furthermore, they cannot provide insight into
the offset between CPU and sensor time.

The approach presented in [1] can achieve very high
accuracy for temporal calibration LIDAR to camera by
supporting the motion estimates with a checkerboard in the
camera’s field of view. However it still requires much more
data (thousands of LIDAR measurements and hundreds of
images) to reach the precision for the average delays that
our approach can yield for each single image or LIDAR
pulse / revolution. Given that much data, the variance of
the average offset estimate per measurement can be much
smaller, bounded from below by the variance of the physical
delays within that data. For example, if we assume 20 s
of data from a LIDAR spinning at 50 Hz our method
accumulates 1000 delay estimates, each of which has a
random error with a standard deviation (SD) of about σ :=
1µs. Assuming independence2 we get a theoretic SD of
the estimated average delay of about σ/

√
1000 ' 32 ns.

Typically, the true average delays over 20 s are far less
stable. However, this instability comes from variations in the
actual delays, something our method allows a user to inspect.
Please note that this is not about the method’s accuracy
— only its precision. Nonetheless, is the right quantity to
compare with competing methods, for which typically only
their precision is published due to fundamental problem of
obtaining precise ground-truth data for calibration. Another
benefit of the simplicity and immediacy of our method is that
we can provide small upper bounds for the actual inaccuracy.

Another typical problem most motion based approaches
suffer from is that they do not have the ability to analyze
the delays and hardware clocks independently of other cali-
bration parameters such as spatial extrinsics or even sensor
intrinsics. Solving the calibration problems jointly does not
prevent high precision, in fact it might even improve it [1].
But it typically makes the problem more complex and fragile
as well as making it more sensitive to the quality of the model
and of the prior calibration.

III. DESIGN

The core idea of our sensor-to-CPU temporal calibration
approach is to create a small, low cost device that allows
the CPU to a) detect the event of taking a measurement for
active sensors, such as LIDARs, or b) trigger physical events
that can be detected and identified in the measurements
of a passive sensor, such as a camera. In order for the
calibration to be accurate it is necessary that the design of
the device yields low unknown latency between an event and

2Assuming independence is probably to coarse considering the Raspberry
Pi we employ for our experiments. But slightly more expensive hardware
can almost diminish this source of inaccuracy — if needed.
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its detection. In this paper we present two such devices: a
LIDAR beam detector (III-A.1), and a LED signaler (III-
A.2) for laser-CPU and camera-CPU temporal calibration
respectively. For both devices it is essential to have accurate
timestamps for edges of a digital electrical signal. We assume
here that the computer receiving the sensor measurements
(PC) does not have an appropriate input. We solve this by
connecting a Raspberry Pi 3 Model B with 1200MHz ARM
CPU (RasPi) via Ethernet, and synchronize it’s clock with
the PC using the Precision time protocol (PTP, see III-B). We
use its general purpose input output (GPIO) pins to directly
trigger an interrupt on its ARM CPU. In order to handle these
interrupts at low latency, we use a specifically developed
kernel module on the RasPi. In our setup Linux is utilized
on both machines. In case the PC does have such an input
(e.g. the Data Carrier Detect line of a RS-232 port as used in
[4]) the approach is even easier to realize because no RasPi
or PTP synchronization is required.

A. Calibration-devices

In the following sections we outline the two devices
developed and used to perform the calibration.

1) LIDAR beam detector: The LIDAR beam detector, is a
photo diode based detector of LIDAR pulses. This detector
is used as depicted in Figure 1 to allow highly accurate
and high rate time of flight (TOF) LIDAR-to-CPU temporal
calibration.

a) Working principle: Whenever a laser pulse of the
TOF-LIDAR hits the photo diode the impact gets detected
through the filter circuit in the RasPi and a timestamp of
the Linux system time, or for this paper CPU-time (CT), is
recorded and sent via TCP to the PC. As the RaspPi’s CT
is synchronized via PTP to the PC’s CT it is possible to
align these timestamps directly with the receive timestamps
of the LIDAR for any particular measurement. For this to
work it is necessary to place the photo diode at a place
where a beam hits it and the corresponding beam’s bearing
needs to be retrieved. To retrieve the bearing we manually
selected a point in the LIDAR’s point cloud using the live
data visualization capability of RVIZ, a visualization tool
provided by the Robot Operating System (ROS)[9]. As the
bearing stays constant over time when both the LIDAR and
the photo diode are stationary this step only has to be done
once per LIDAR for a series of delay estimations.

b) Circuit: The entire detector circuit we used is an IR-
photo diode, 900 nm, SFH 203 FA, Osram Semiconductors
connected with its anode to the base of a BC547 transistor,
whose emitter is grounded, while its cathode is pulled up
to 5V through a 10 kΩ resistor. The transistor’s collector
is pulled up with a 2 kΩ resistor to 5 V. The signal at the
collector is sent through a Schmitt trigger (74HCT14) and
a 10 kΩ resistor to the GPIO of the RasPi to trigger the
interrupt.

c) Data assignment: The periodic nature of the mea-
surements (e.g. per revolution of the spinning LIDAR) yields
an assignment problem, as the beginning of the two mea-
surement series (LIDAR and photo diode) may not coincide.

This yields an ambiguous latency by multiples of the time
for one LIDAR revolution (typically & 20 ms). In order to
resolve this ambiguity we manually block the path from the
LIDAR to the photo diode for a few periods. This blocking
event is easy to automatically detect, as it appears as gaps in
the photo-diode time-series data along with unusually short
ranges measured by the LIDAR. Having detected this in both
the photo-diode and laser time series we compute a relative
shift for the laser time series which aligns its shorter range
data to the gap in the photo diode time series. A shift is
enough for the entire data assignment after gaps in both series
have been filled with placeholders for missed packages from
the LIDAR or undetected events on the photo diode. This can
be done for both the laser and photo diode time-series based
on the approximate LIDAR revolution period. After applying
the correct shift to the dataset containing the blocking event
a good first estimate for the transport delay can be retrieved.
This first estimate may then be used to resolve the ambiguity
for future datasets since it only needs to be accurate to within
one revolution of the sensor. For the same reason this step is
unnecessary in case of sufficiently accurate prior knowledge.

d) Accuracy: The detector itself is not without delay.
However, is possible to retrieve bounds for the delay. First
an upper bound for the delay from when the diode the
diode detects the laser until the RasPi takes a timestamp can
be found by employing an IR-LED to periodically trigger
the photo diode. This can then be compared to the trigger
signal via the use of a GPIO output of the RasPi. This is
done by changing the output pins value whenever the RasPi
receives an interrupt and after taking the timestamp using a
suitable oscilloscope. The oscilloscope is only used here for
validating our method, and is not necessary for application
scenarios. With our setup the overall delay from the positive
edge of the IR-LED current to the RasPi feedback was
randomly distributed between 5 and 10µs. Comparing the
induced photo current in the photo diode between when it
was triggered with the IR-LED and when a LIDAR beam hits
it (Figure 2) using an oscilloscope clearly shows that the first
signal edge is even steeper for the laser beam. Therefore,
we assume an upper bound for the delayed LIDAR pulse
arrival to RasPi timestamp of 10µs. The synchronization
error between RasPi and the PC is within approximately
±20µs according to the internal assessment of the ptpd3.
In total we expect the absolute error for our setup per single
laser pulse to be within [−20, 30]µs. The concept has the
potential for nanosecond accuracy when used with more
expensive hardware.

2) LED signaler: The LED signaler, is comprised of
a LED display with 10 large LEDs that are sufficiently
bright to be visible in the camera images, even with very
short exposure time (e.g. 0.1 ms). These LEDs constitute a
digital “clock” employing a special redundant encoding to
prevent false readings through the camera images. The LED
Signaler is employed as depicted in Figure 3 to allow high
rate camera-to-CPU temporal calibration with an expected

3https://sourceforge.net/projects/ptpd/
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Fig. 2. The photo current of the photo diode (yellow, measured as voltage
at a 10 kΩ resistor) caused by the impact of two consecutive laser pulses
of a LMS151 spinning at nominal 50 Hz and the feedback signal of the
RasPi after taking the timestamp (cyan). It shows the typical delay about
3.2µs of the feedback. The second valley of the yellow curve corresponds
to the subsequent laser pulse from the LIDAR. In the RasPi we prevent in
software (based on the temporal distance) to take another timestamp at the
second (no feedback).
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Fig. 3. The setup for Camera-to-CPU temporal calibration. Every image
taken by the camera can be located in time based on what LED state is
displayed. The LED status is controlled by the Raspberry PI with little
unknown latency.

accuracy per measurement of approximately the minimal
exposure time of the camera.

a) Working principle: The principle here is to observe
the state of the LED “clock” in the camera images and use
this state to associate the image timestamps with the RasPi
timestamps of a corresponding state. Our setup consists of
an LED display comprised of 10 LEDs in a row. The two
outermost LEDs are always kept on in order to predict the
locations of the inner LEDs. The 8 inner LEDs (0..7) are
driven by a digital 6-bit counter at a user defined frequency,
and define the state of the display. The 4 most significant bits
directly control LEDs 4..7, while the two least significant bits
control the other 4 LEDs, such that exactly only one is on
at a time and its index corresponds to the binary number
encoded with the two bits. Hence, the (4 + 4) LED setup
can display 26 = 64 states. The digital counter that controls
the LEDs also triggers an interrupt on the RasPi through one
of its GPIO ports, whenever the LED starts showing a “0”.
Similar to the LIDAR beam detector setup, the RasPi assigns
a timestamp to such events using the Linux CT, which is
recorded and sent via TCP to the PC. These “0” timestamps
are then used to compute timestamps for every state of the
LED display, assuming a constant frequency between two
“0”s of the LED display. To generate the input signal for
the clock-counter we used our kernel module running on the
RasPi, but it could be any source.

b) Data Assignment: To determine the timestamp of an
image to a precision of the camera exposure time (τe), the
LED display must be driven at a frequency of ( 1

τe
). However,

this leads to images where a transition in the state of the
display takes place during an exposure. This leads to a data
assignment problem as the state transition with one LED
turning OFF and another turning on during an exposure may
be incorrectly detected as a state with both LEDs ON. In
order to remove such frames from the data association we
represent the two least significant bits of our LED clock by
4 LEDs (see above). When 2 of them appear ON in a camera
frame there is only one possible transition that can cause this,
and the time in the middle between the two states is estimated
for the image. In addition, frames showing the transitions
between LEDs 0 and 3 are skipped since these imply a
change in state of one of the more significant bits, whose
observed state might then not be distinguishable from state
transitions. The so encoded number on the LED display in
any given camera frame is calculated in an automated manner
using a simple computer vision blob detector algorithm. This
allows us to align the camera timestamps with the clock
timestamps with an ambiguity of the period of the entire
LED-clock (the duration after which it repeats itself). In
order to resolve this ambiguity, a box prior for the average
total processing and transmission delay per image is required
with an uncertainty smaller than the period of the LED
clock. This poses no problem because the period is adjustable
through the clock frequency and one can start with a low
frequency e.g. 500 Hz which requires the uncertainty to only
be below 64/500 s = 128 ms. One pass with this frequency
reduces the uncertainty to 2 ms. Such a prior is good enough
for our goal frequency of 10 kHz, which can be used in a
next pass.

c) Circuit: The schematic of the circuit driving the
LED display is too much detail for the paper. But it is
very simple to design once the necessary LED pattern is
known. For our prototype we used two 74HCT191, 4-bit
counters chained together to an 8-bit counter, a 74LS42 to
demultiplex the two least significant bits, and a HCF4069 to
invert the output signals of the 74LS42. Additionally we use
one BC547 transistor per LED to amplify the output current
of the digital ICs and resistors to adjust the current through
the transistors and LEDs, and some capacitors to stabilize
the signals. One input of the RasPi is connected to the 7-th
bit of the counter to notify about newly reached “0” display
states.

d) Accuracy: Our approach limits the accuracy of the
estimated image timestamps to within the exposure time of
the camera. Hence, to obtain accurate measurements, the
exposure time should be set to a small value and the LEDs
chosen should be bright and close enough to be clearly
visible in the image. The LED clock’s base frequency (rate
of a single clock increment) should be about the inverse of
the camera’s exposure time. A higher clock frequency would
observe the average effect of multiple LED transitions during
one exposure and a lower frequency limits the accuracy
achievable with a single image. For our setup we set the



camera exposure time to 0.1 ms and the LED clock frequency
to 10 kHz leading to an absolute error for each image
timestamp to be within [−0.05, 0.05] ms.

B. Precision time protocol (PTP)

The Precision time protocol (PTP, [7]) is a protocol
for two-way synchronization between computers or other
network nodes and from the user perspective similar to NTP.
In contrast to NTP it is designed for local area networks
and aims at much higher accuracy. Up to few nanoseconds
when used with hardware support in the network devices.
Even without any hardware support it typically maintains
synchronization within a few microseconds. To synchronize
the main PC with the RasPi we used ptpd3 without using any
hardware timestamping because the RasPi’s Ethernet adapter
does not support hardware timestamping.

C. One way clock translation

In order to exploit the device time (DT) measured by
clocks within the sensors for sensor fusion or control it is
necessary to translate it into CPU-time (CT). The same is
necessary in order to use the calibration devices presented
in this paper because they measure the sensor activity ef-
fectively in the CT. This is typically done by a suitable
filter / batch algorithm fusing the receive CT-stamps with
the DT-stamps in the received packages. Therefore we are
referring to the resulting time with translated device time
(TDT). To filter the DT-stamps we used our free software
implementation4 of the convex hull algorithm presented in
[10]. This is identical to what was used in [1] and equivalent
to the TICSync implementation used in [4] with the differ-
ence that the latter’s authors are using an estimator switching
periodically between two of the convex hull filter, which get
reseted whenever their turn is over to prevent relying on too
old data and therefore be more resilient against long term
drifts. For our experiments we also use a switching version
of the convex hull algorithm. To retrieve the offset to this
TDT with respect to the CT (it is always lagging behind,
roughly by the minimal unknown transport delay) is typically
the goal of temporal calibration.

With the devices presented here it is possible to go much
further due to their high rate high accuracy nature. They
enable the user to monitor the performance of the hardware
clock filter itself on data generated from the real target
hardware clock. This is useful for tuning, developing and
debugging hardware clock filters directly for a given sensor
possibly taking relevant influences such as sensor tempera-
ture into account. These tasks are typically hard problems
unless one is using hardware synchronization, which we
assume to be no option.

In Section IV we are going to show two versions of TDT
for the same raw data for the reader to better appreciate the
problem.

4Available as part of https://github.com/ethz-asl/cuckoo_
time_translator/

IV. EXPERIMENTS AND RESULTS

A. Setup
We evaluate our method using the following sensors:
• two different Sick LMS151 LIDARS spinning at 50 Hz

using a 100 MBit Ethernet connection,
• two Hokuyo LIDARs, UTM-30LX (USB2; 2 hubs) and

UTM-30LX-EW (100 MBit Ethernet),
• a Point Grey BB2-08S2C-25 (Firewire; 1 hub),
• a Point Grey Chameleon3 CM3-U3-13Y3C (USB3; 1

hub).
We recorded data from these sensors while estimating the

time until the measurements are received on the main PC.
All sensors connected via Ethernet communicate through
two gigabit Ethernet switches with the PC. All sensors are
connected and running in parallel, together with a Velodyne
32E and one more LMS151 within a complex robotic system.
However, only one sensor is analyzed at a time. Each LIDAR
sensor is recorded for 60 s and each camera for 20 s and
the estimated arrival delays and offsets to their TDT are
presented. The Chameleon3’s strobe signal and the UTM-
30LX’s “synchronous output” are additionally connected to
GPIO ports of the RasPi and the timestamps of their rising
edges are recorded in parallel to provide ground truth to
validate our methods.

We use ROS [9] as the middleware to interface with the
sensors. To our surprise all four required open source ROS-
drivers lacked the support for DT-stamps. In order to be able
to present the hardware clock offsets as part of our analysis,
these drivers were extended to allow the hardware clocks to
be used. We made this work also publicly available1.

B. Evaluation
All the figures in the following section follow a common

layout:
• The x-axis reflects the CT of the plotted events shifted

such that the first measurement is always at zero.
• The y-axis is a time offset between two CT-stamps

associated with a common event, of which the reference
time is always a time determined with one of the
calibration devices by the synchronized RasPi.

• Red points correspond to the overall transport and
processing delay of a measurement package (camera
image / LIDAR ranges), i.e. the CT of arrival at the
main PC (receive time) of a sensor measurement minus
the corresponding CT of the first measurement in the
data package.

• Green points correspond to offsets of TDT-stamps, i.e.
the one way TDT minus the CT of the corresponding
detection.

• Optional blue points correspond to the offset of hard-
ware signals coming directly from the sensor (e.g.
strobe) to the RasPi for validation of our method.

C. LIDAR-to-CPU
For the LIDAR-to-CPU temporal calibration experiments

we use the LIDAR beam detector device to generate times-
tamps in CT (by the means of PTP synchronization between

https://github.com/ethz-asl/cuckoo_time_translator/
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the main PC and RasPi) for the detection of LIDAR pulses
on the photo diode. For all the experiments one event is
measured per revolution of the spinning sensor as one photo
diode is used and only the first detection per revolution is
recorded (based on the roughly known sensor period)

Figure 4 shows results for the UTM-30LX and the UTM-
30LX-EW, each spinning at 40 Hz. The specific pattern of
the TDT-stamps (green) is caused by the remainder of the
sensor’s revolution time modulo the milliseconds counted by
their internal clocks. The UTM-30LX data indicates a very
stable revolution period. It yields almost a fixed fraction of a
millisecond that it looses every revolution until it has lost an
ε > 0 more than a millisecond, which corresponds to only ε
— modulo the one millisecond resolution. The high stability
of the revolution period can be exploited to get timestamps of
lower variance than a naive translation of the low precision
DT, as suggested by [1]. A very simple way to do this is to
use the revolution counter as a “sensor clock” instead of its
timestamps. This clock’s “time” can be translated with the
same type of algorithms into CT. We show in Figure 4 (black)
the offsets of the revolution counter after translating it with
the same convex Hull algorithm we use for the green plots.
This method is not reliable enough for real world application
but it yields a good way to asses the stability of the revolution
time. The UTM-30LX-EM shows similar effects, with the
differences coming from a less stable revolution period.

To validate the performance of the LIDAR beam detector
we retrieve additionally CT-stamps for the rising edge of
the UTM-30LX’s “synchronous output” (also in Figure 4,
blue). This demonstrates high precision. However, the mean
(2.607 ms) only roughly corresponds to the 2.75 ms delay
specified by the manufacturer (as given in [1]). Because of
this significant discrepancy, discrepancy, we must rely upon
the oscilloscope (Figure 2) and the corresponding camera
test in Figure 6 for the accuracy. Furthermore, we found
that this delay changes over time between 2.56 and 2.62 ms,
qualitatively corresponding to the drift in rotation frequency
from 40.2 to 39.9 Hz. This indicates that the specification of
2.75 ms is indeed inaccurate.

Figure 5 shows the result for 20 s of data from the
LMS151(b), spinning at 50 Hz 5. These sensors emit two
timestamps from the same clock with each package. One
timestamp for the measurement start and one for the trans-
mission start. The latter can be used to improve the clock
translation as it happens very close to the physical receive
time. Using this improved translation for the start timestamp
yields better accuracy and a CT that is in deed close to the ac-
tual measurement start, without relying on assumptions about
the measurement and processing duration as can be seen
in Figure 5 (green). The remaining negative offset comes
from the fact that according to the specification, the start
timestamp is taken internally at 14 degree before the actual
measurement start. This corresponds to −0.77 ms, which is
very close to the mean of the translated start time (−0.71).

5The corresponding plot for the LMS151(a) is not included because it
is very similar including the very surprising hardware clock behavior (see
caption).

The remaining difference is probably due to the random 1 ms
jumping of the green signal. To our great surprise we had to
assume here that the start-timestamp delivered along with the
measurements from one measurement phase actually marks
the beginning of the next measurement phase6.

Statistical data for all these datasets is presented in Ta-
ble IV-C. Each is based on 60 s of data per LIDAR, of
which only the beginning may be plotted in the correspond-
ing figures for the sake of readability. The two numbers
for the receive latency’s mean correspond to first and last
measurement of one package. Both are inferred based on the
measurement for one beam, its index, and the duration of a
full measurement phase. Please note that all these numbers
will not translate well to other setups and systems because
the sensors are only a part of the communication. This holds
in particular for the means. Furthermore, they depend on the
revolution period, which typically drifts significantly over
time and possibly depends on the motion / alignment of the
sensor with respect to gravity. Additionally, for the Hokuyo
sensors it depends on how the internal bandwidth limit7

is overcome: skip revolutions or restrict the measurement
angles range. We use the latter, which also leads to smaller
packages that typically have less random transport delays
than larger packages. Nevertheless, comparing the different
LIDARs, it becomes apparent that the two LMS151 are
much quicker at delivering the data through Ethernet than
the UTM-30LX-EW (about 7 ms vs. 14 ms minimal latency).
But at the same time their delay is less predictable (0.14 ms
vs. 0.04 ms). The UTM-30LX connected with USB2 is even
quicker (minimal latency mean 3.6 ms). However on the
USB2 bus we observed quite frequent and rather severe
outliers in the latencies, up to ∼ 10 ms. Without specialized
DT translators all presented LIDARs have more accurate
receive time. However, a) more recent / expensive models
are likely to have better DT-stamps (e.g. the Velodyne HDL-
32E, whose analysis is beyond the scope of this paper), and
b) in applications where larger outliers must be avoided it
might still be better to utilize the DT-stamps as they can
be more reliable, especially in the case of a dedicated data
connection.

Our results clearly indicate that to analyze the performance
of a LIDAR’s hardware clock and to tune, develop and
evaluate new filters for it, the LIDAR beam detector is a
very useful device because it provides the user with the exact
feedback needed: a reference timestamp to compare with for
a real device.

D. Camera to CPU

For Camera-to-CPU temporal calibration experiments we
use the LED Signaler device to generate timestamps in CT
(by means of RasPi-CPU PTP synchronization) of each state
of the LED display. We obtain a delay or offset for each
image coming from the free running camera (Chameleon3

6Assumed it to mark the beginning of the same data the transmission of
a package containing 15 ms measurements would happen < 3 ms after the
first measurement.

7The sensors are not able to deliver at full rate over the full angular range.



Fig. 4. Time offsets for the UTM-30LX (top) and UTM-30LX-EW
(bottom). The latency (red) shows the typical pattern of random delays
caused on the USB bus and in the OS kernel. The translated hardware clock
offset (green) nicely shows the effect of DT taken with too low precision
(1 ms; less precise than the revolution period). This lack of precision makes
it less accurate than the receive time (SD ' 50µs) when used with a simple
hardware clock translator (green, SD ' 290µ). However, it is possible to
improve on this by exploiting the precision: black (SD ' 17µ). The UTM-
30LX-EW’s corresponding plot (bottom, black) shows the limitations of
this “trick”. It’s higher variance (SD ' 120µs) indicates that this sensor’s
revolution period is less stable. The delay from the rising edge of the
“synchronous output” of the UTM-30LX until the first measurement as
detected by the photo diode (blue) shows very low variance (SD ' 1µs).
This demonstrates the high precision of our method. It is not close to 0
because it is not synchronized with the first measurement but with a specific
angle before it. Please note the break in the y-axis of the plot.

Fig. 5. The LMS151(b) receive latency’s (red) show the expected random
delays (mean ' 21.6 ms and SD ' 0.14 ms). The TDT (green) shows very
surprising behaviour. It seems to jump between two hardware clocks that are
almost precisely 1 ms apart. Each of these apparent clocks is very precise
(< 10µs SD between the jumps; the DT resolution is 1µs). Because of
these unpredictable jumps the overall randomness of the DT-stamps has a
standard deviation of approximately 0.5 ms, which is significantly larger
than the SD. of the random transport delays. Using the revolution counter
as a clock (black) is no alternative. Instead it reveals significant short term
instability of the rotation period. The magenta plot shows the translated
transmission timestamp. Its existence allows the start timestamp (green)
translated with the same model to be close to the actual measurement start.
Please note the break in the y-axis of the plot.

Sensor receive latency trans. hw. clock off.
mean [ms] SD [ms] mean [ms] SD [ms]

UTM-30LX 21.9− 3.9 0.085 21.3 0.289
. . . -EW 31.6− 13.6 0.042 31.1 0.257
LMS151(a) 21.6− 6.6 0.174 −0.7 0.498
LMS151(b) 21.6− 6.6 0.142 −0.7 0.491
Chameleon3 13.8 0.712 11.6 0.020
Bumblebee2 51.7 0.116 51.3 0.023

TABLE I
LATENCY AND OFFSET STATISTICS FOR THE TESTED SENSORS

or Bumblebee2) by detecting the state of the LED display in
the image and associating it to a corresponding state of the
display as described in section III-A.2. The camera exposure
times are set to 0.1 ms, which should limit absolute errors
to within [−0.05, 0.05] ms for each measurement. Thanks to
the short exposure time normal office lighting does not pose
any problem for the procedure. Typically only the LEDs are
bright enough to be visible in the images8.

Figure 6 shows the delay and offset plots for a 20 s dataset
collected using the Chameleon3. In addition to recording
the image arrival and TDT-stamps, we also recorded the
timestamp for the strobe signal for each image directly in
RasPi time. As seen from the figure, the difference between
estimated image timestamps using our method and the strobe
signals (blue) has a mean of only 10µs (SD 19µs), clearly
validating our method. Furthermore, we can observe that
the variance of the image arrival timestamps (red) over the
dataset is much greater than the translated image DT-stamps
(green), reflecting the variable delay in image transmission.
Table IV-C shows statistics providing a comparison between
image arrival timestamps and TDT-stamps for both cameras
studied during this work. Figure 7 shows similar plots for
the delays and offsets of the Bumblebee2 camera but without
strobe signal. The offsets plotted in purple show the typical
bad performance of a freshly started convex hull filter. Only
after some time it obtains steady values for the delays
(green), hence the particular switching concept described
above, which allows a filter to mature before being used.
Long term clock drifts (acceleration / deceleration) are not
captured by the employed convex hull filter, and hence a
gradual drift in the offset values can sometimes be observed
in longer datasets, such as the one shown in Figure 8.
Against this problem the reset part of the switching concept
is a good remedy. Switching was disabled for this last
experiment.

Since our method provides an offset almost for each image
in contrast to batch processing based approaches [1], [2], it
is a useful tool to study such effects for a variety of sensors.

V. CONCLUSIONS

We presented a novel approach for temporal calibration of
LIDARs and cameras with respect to a connected computer’s
system time that offers high accuracies at a high rate. And
we showed with 5 different sensors that it can easily provide

8The LED display image in Figure 3 was taken in a bright office and
behind the LEDs there was white plastic.



Fig. 6. Chameleon3 time offsets estimated using the LED signaler. As
hoped, the strobe signal time offsets (blue) have almost zero mean (10µs;
SD 19µs; both below exposure time, 0.1 ms). Hence they validate the
method. The standard deviation of the receive latencies (red; SD 0.7 ms)
is observed to be much higher than the offsets of the translated image
timestamps from the camera hardware clock (green; SD 20µs). Data
collected over 20 s, 192 images (+66 skipped). Please note the break in
the y-axis of the plot.

Fig. 7. Bumblebee2 time offsets estimated using our method for received
(red), and hardware (green) timestamps. The statistics for this 20 sec
dataset are tabulated in Table IV-C. The offsets shown in purple are also
obtained using DT-stamps. However, they are translated to CT using a filter
(Section III-C) initiated at the beginning of the dataset as opposed to the
green offsets, which are translated using a filter which has been running
for a while. This highlights the effect of using one way clock translation,
to learn the higher order terms of clock skew and offset for the sensor
hardware clock with respect to the CPU clock.

Fig. 8. Bumblebee2 time offsets over a longer, 300 s dataset (1124 images,
+374 skipped due to LED transitions). The red points show the offsets of
the image arrival timestamps. One can also see the slow, drift of the camera
hardware clock with respect to the CPU clock over time (green). This is
due to imperfection of the one way clock translation applied here (green;
convex hull without switching). Our setup is precise enough to highlight
these effects, and provides a stepping stone towards addressing them in
application scenarios.

insights into the nature of the sensor delays that are difficult
to retrieve otherwise. The presented solution promises to
be relevant to all applications that require low timing un-
certainty when utilizing these sensors, such as high speed
state estimation and control. The proposed methodology is
particularly useful in the detailed analysis of the temporal
offsets to leverage optimal hardware time filters or investigate
causes for random transfer delays. We expect the contribution
of this work to be most useful for robotic researchers and
industrial users relying on these sensor types without having
the resources for custom hardware development or hardware
synchronization. To validate our methods we compared our
results with the hardware synchronization signals of a camera
and a LIDAR and measured the delays of the LIDAR beam
detector using an artificial IR source to simulate laser pulses
from LIDARs.
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