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Abstract— Accurate localization of other cars in scenarios
such as intersection navigation, intention-aware planning, and
guardian systems is a critical component of safety. Multi-robot
cooperative localization (CL) provides a method to estimate
the joint state of a network of cars by exchanging information
between communicating agents. However, there are many chal-
lenges to implementing CL algorithms on physical systems, in-
cluding network delays, unmodeled dynamics, and non-constant
velocities. In this work, we present a novel experimental frame-
work for range-based cooperative localization that enables the
testing of CL algorithms in realistic conditions, and we perform
experiments using up to five cars. For state estimation, we
develop and compare a particle filter, an Unscented Kalman
Filter, and an Extended Kalman Filter that are compatible
with nonlinear dynamics and the asynchronous reception of
messages. We also model the relative transform between two
unicycle models and perform a nonlinear observability analysis
on the system, giving us insight into the measurements required
to estimate the system’s state. Our approach enables relative
localization of multiple vehicles in the absence of any global
reference frame or joint map, and we demonstrate the effec-
tiveness of our system in real-world experiments. Our results
show that the UKF is likely the best candidate to use for the
CL task.

I. INTRODUCTION

Situational awareness in traffic is a key functionality of
autonomous driving [1]. In particular, accurate localization of
other cars is especially important for intention-awareness in
maneuvers such as merging and unprotected left-hand turns.
In these scenarios perceiving even a small change in velocity
or bearing by the other cars can impact decision making and
the safety of the current maneuver. In order to obtain the
location of relevant surrounding vehicles, it is not sufficient
to rely on a car’s typical sensors, which usually consist of a
combination of LiDARs, radars, and cameras. These sensors
do not receive direct state measurements of the other cars
but instead must estimate their states indirectly; furthermore,
they are not capable of perceiving other cars that are not in
line of sight.

Recent developments in Vehicle-to-Vehicle (V2V) com-
munication systems support alternative solutions to localiza-
tion [2], [3], [4]. A car can obtain its position when it is
localized against a previously created map or when infor-
mation from a Global Navigation Satelite System (GNSS)
such as the Global Positioning System (GPS) is available.
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Fig. 1: The range-based cooperative localization system
proposed in this work is deployed and evaluated on five MIT
Racecar [5] platforms with a sensor setup similar to the setup
on autonomous cars.

This position can be sent out to the other vehicles in its
environment using V2V communication. In practice, it is
not feasible to rely on permanent availability of an up-to-
date map or on the availability of a GPS signal. The former
can happen when environmental changes make localization
in existing maps unreliable or in mapless driving applications
which do not assume the existence of a map. Loss of GPS
signal can occur in tunnels and in urban driving scenarios
where buildings hinder satellite connectivity.

In the absence of global positioning data, a distributed
cooperative localization scheme in which cars perform rel-
ative position measurements and exchange their odometry
information using V2V communication could provide a
better solution. In this work, we consider the cooperative
localization problem assuming that the cars are capable
of exchanging relative range measurements. While it has
been shown that it is more challenging to localize with
relative range measurements than with relative bearing mea-
surements [6], relative bearing measurements are harder to
obtain, since implementations rely on visual tracking to
estimate bearing and therefore require full visibility of the
other cars [7], [8]. Ultra-wideband (UWB) radio systems,
by contrast, can provide accurate range measurements even
in non-line-of-sight scenarios by taking into account multi-
path effects. While numerous approaches have considered
cooperative localization scenarios, they typically assume the
existence of a global reference frame, rely on additional
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bearing measurements, or do not consider the underlying
system dynamics [9], [10], [11].

In our work, we propose a new system that estimates
the relative positions of surrounding vehicles from UWB
range measurements and odometry information. UWB range
measurements are reliable to within 10 cm at ranges of up
to 100 m [12], which covers most intersections in complex
road networks. Our solution requires no outside infrastructure
and is distributed, so that each vehicle shares its range
measurements with cars in its network. Using a particle filter,
Unscented Kalman Filter (UKF), or Extended Kalman Filter
(EKF), the car estimates the locations of the other cars in its
neighborhood, whether they are in line-of-sight or not. We
also discuss the architecture of the cooperative localization
system and explain the individual design choices. The system
is evaluated in physical experiments using up to five cars.
Overall, this paper contributes the following:

1) A comparison of a particle filter, UKF, and EKF for
cooperative relative localization of multiple vehicles
using just odometry and UWB range measurements.

2) A model of the relative transform between two uni-
cycle models and the corresponding nonlinear observ-
ability analysis.

3) An experimental multi-robot platform for cooperative
localization.

4) Evaluation in physical experiments with up to five
vehicles in which the assumptions made in other works
are relaxed, i.e., time delays and packet loss on the
network; varying linear and angular velocities while
driving; asynchronous reception of range and odometry
measurements; no stationary landmarks/beacons; and
no measurements in a global coordinate system.

II. RELATED WORK

The multi-robot cooperative localization (CL) problem, in
which the state of the system is estimated through some form
of information exchange between the nodes of a network,
has been approached from many different angles. In map-
based multi-robot localization, multiple agents collaborate
in order to create or localize from a joint map. Multi-robot
map creation can be carried out in an offline fashion where
multiple maps are, topologically or metrically, co-registered
to each other [13], [14]. Recent work has also investigated
scenarios where several agents simultaneously create a joint
map [15], [16], [17]. Although these approaches can be
very accurate and also result in the construction of a shared
map of the environment, their downside is that they require
significant data collection and exchange and also impose a
significant burden on computational power and data transfers
in order to create and synchronize a given map online. Our
approach operates in a purely mapless fashion and thus
requires neither the existence of a joint map nor potentially
costly synchronization mechanisms.

There has also been a considerable amount of research
focusing on cooperative localization without assuming the
use of a map. These approaches often focus on estimating
the relative transforms between agents using a combination

of proprioceptive measurements, such as odometry, and
exteroceptive measurements, most commonly relative range,
bearing, and orientation measurements. EKFs are often used
to estimate the state of the system [18], [19], [20]; their
advantages are that they are computationally efficient and
easy to analyze, resulting in bounds on error and covariance
estimates such as in [9], [10]. If both relative range and
bearing measurements are available, they can be converted
into an estimate in Cartesian coordinates and easily lin-
earized. Other approaches tackle the issue of nonlinearity by
using a particle filter, UKF, or other more specialized filters
such as the Cubature Kalman Filter to estimate the posterior
likelihood density; they also often incorporate consensus
schemes to share estimates across a network [21], [22],
[23], [24], [11], [25]. However, the exchange of states rather
than the raw measurements may introduce common process
noise into the estimate and requires special treatment, e.g.
by using methods such as covariance intersection [26]. We
compare the performance of a particle filter, UKF, and EKF
on our nonlinear model and exchange range and odometry
measurements between cars.

Although the analysis of nonlinear models is much more
difficult than in the case of a linearized system, nonlinear
observability analyses have been performed on cooperative
localization systems. [27] performs a nonlinear observability
analysis on a single unicycle robot that can take range mea-
surments of its environment. [6] performs an observability
analysis on a two-robot system using a relative model in
polar coordinates, and they compare range, bearing, and ori-
entation measurements, as well as the necessity of odometry
measurements. We perform a similar analysis for range mea-
surements in Cartesian coordinates. [28] extends the analysis
of the two-car system with only bearing measurements to the
N -car case. In [29], an observability analysis is performed
for robots in a 3D underwater environment.

While most works consider the theoretical aspects of
cooperative localization, there have been several experiments
demonstrating a fully integrated real-world system. In [30],
[31], a relative transform is estimated in the context of
situational awareness and tracking occluded operators from
a UAV. In contrast to those works, our work simultaneously
estimates relative transforms for a group of vehicles. An ap-
plication with multiple cars is presented in [8] using bearing
measurements, which requires direct visibility to estimate.
The work presented in [32] considers relative localization for
a group of micro air vehicles based on range measurements
using an EKF. Experiments using Autonomous Underwater
Vehicles (AUVs) are presented in [33], [34]. In contrast to
previous work, our experiments use a driving platform with
a unicycle model, and given the nonlinearity of the dynamics
and measurement models we evaluate three different filters.

III. SYSTEM MODEL

We consider a 2D multirobot system indexed by Ω =
{1, . . . , N}. We do not consider the absolute position of the
robots but rather the relative transformations between the
robots.
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The measurement graph between robots is defined by
a relative position measurement graph (RPMG), adopted
from [9]. In our case, this graph defines which pairs of
robots can take relative range measurements of the other’s
position. In this work, we assume that the measurement graph
is complete, i.e. every robot ranges with every other robot.
We call the set of other robots with which robot i can range
the neighbors of robot i, Ni.

Each robot i estimates the transformation between its
local frame and its neighbors’ local frames, so that the state
space is defined as Ti = {Tji|i ∈ Ω, j ∈ Ni}. A single
transformation is defined as Tji = [xji, yji, θji]

T ∈ SE(2).

A. Motion Model

The inputs are from odometry measurements of linear and
angular velocity, ui = {vi, ωi}. All robots are assumed to
have a unicycle motion model,

dTji
dt

=

vj cos θji
vj sin θji
ωj

+

yjiωi − vi
−xjiωi

−ωi

 . (1)

The first part of Eq. 1 represents the effect of robot j
on Tji – this is simply the unicyle model. The second term
models the effect of robot i on its own transform. The effect
of angular velocity ωi on the transform, assuming all other
inputs are 0, is modeled by dTji

dt = −ωi × r, where r =
[xji, yji]

T . This can be reformulated as a dot product using

the angular velocity tensor W =

[
0 ωi

−ωi 0

]
as

dTji
dt

= W · r =

[
yjiωi

−xjiωi

]
.

We assume a continuous-time model and approximate the
next state using the Runge-Kutta method.

B. Observation Model

Besides the odometry measurements, which we integrate
into the motion model, we take only range measurements
from the UWB sensors. We define an observation oji as robot
i’s range measurement of robot j,

oji =
√
x2ji + y2ji. (2)

Note that this range measurement is nonlinear and gives
no information on the relative angle θji between the frames
of the robots. Unlike other works that linearize the dynamics
and measurement models, we do not assume a bearing
measurement, which could be used to linearize the model.
Nevertheless, our model is observable, as shown in [6].

C. Nonlinear Observability Analysis

Since we use a nonlinear dynamics model, we cannot an-
alyze the observability of our system using the observability
matrix from linear systems. We therefore perform a nonlinear
observability analysis on the two-car system. Our analysis is
similar to the one performed in [6], but using a different
coordinate system. The concept of nonlinear observability is
undergirded by the concept of indistinguishability, as defined

Fig. 2: Grey arrows represent the transforms between ego
car i and other cars j and k. Blue lines represent range
measurements and the red and green arrows represent the
x- and y-axes of each car’s local frame.

in [35]. Let T be the C∞ 3-dimensional manifold of our
system, and let U be a subset of T . Furthermore, let x0, x1 ∈
T . Then x0 is U-indistinguishable from x1 if for every
control u, the trajectories x(t0, t1, x0, u) and x(t0, t1, x1, u)
both lie in U and cannot be used to distinguish between x0
and x1. A system is locally weakly observable at x0 if there
exists a neighborhood U of x0 such that if a point x1 ∈ U
is U-indistinguishable from x0, then x0 = x1. A system is
locally weakly observable if this is the case for all x ∈ T .

Note that our model Eq. 1 is affine in the inputs and can
therefore be represented as

Ṫji =

4∑
k=1

gk(T )uk, (3)

where

g1(T ) = [−1, 0, 0]T g2(T ) = [yji,−xji,−1]T

g3(T ) = [cos θji, sin θji, 0]T g4(T ) = [0, 0, 1]T .

Let oji : T −→ Y = R be the smooth output map of the
system. The observation space O of the system is defined
as the linear space of functions on T containing oji and all
repeated Lie derivatives:

O = spanLZ1
LZ2
· · · LZk

oji, (4)

with Zi, i ∈ k, in the set {g1, . . . , g4}. Note that because
LX1 + LX2H = LX1H + LX2H and LX(H1 + H2) =
LXH1+LXH2 [36], the Lie derivatives over g1, . . . , g4 span
all of O.

The observability codistribution dO is defined as

dO(q) = span dH(q)|H ∈ O, q ∈ T (5)

By the observability rank condition at x0, if dim T =
n and dim dO(x0) = n, then the system is locally weakly
observable at x0.

To simplify the equations while calculating derivatives, we
will take the measurement model to be an equivalent form,
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oji =
1

2
(x2ji + y2ji).

For reference, the Lie derivatives of a field h along a vector
field f of orders 0 to n are defined as

L0
fh = h , L1

fh = ∇h · f ,

Ln
fh =

∂

∂Tji
[Ln−1

f h] · f .

From this we get

L0h =
1

2
(x2ji + y2ji)

L1
g1h = −xji
L1
g2h = 0

L1
g3h = xji cos θji + yji sin θji

L1
g4h = 0

Therefore the space dO0 is spanned by

∇L0
h = [xji, yji, 0]T ,

and the space dO1 is spanned by

∇L1
g1 = [−1, 0, 0]T

∇L1
g3 = [cos θji, sin θji,−xji sin θji + yji cos θji]

T .

From this we can see that the gradients of the Lie deriva-
tives span the observation space. Interestingly, the values
of measurements ωi and ωj do not affect the rank of the
observation space. We can also determine that non-zero
measurements of both vi and vj are required for the state
to be fully observable, agreeing with the analysis in [6].
Therefore we can conclude that as long as both vehicles
have non-zero linear velocity, it is possible to estimate their
state using just a single range measurement, a fact that we
verify experimentally in Sec V-A. We expect that in the
N > 2 car case, the extra range measurements mean that
fewer odometry measurements are necessary to observe the
full state; however, such an analysis is outside the scope of
this work.

D. EKF and UKF Formulation

We formulated the EKF and the UKF along standard lines,
using the FilterPy Python package [37].

E. Particle Filter Formulation

We use a particle filter to estimate the posterior density
p(T t

i |u0,o0, . . . ,ut,ot), where ut and ot represent odom-
etry and range measurements from robot i or from any
neighbor of robot i in any arbitrary order collected during
time interval t. Note that the set of measurements over a
given time period can be empty. Also note that the estimate
of each transform is conditionally dependent on the other
transforms due to the range measurements, and therefore the
state of the system cannot be decomposed. Therefore the cars
must share their range measurements, which we accomplish
by using a wireless network, described in Sec. IV-B.

Fig. 3: Two Decawave ultra-wideband radios serve as the
range sensors for our system.

We use a Sampling Importance Resampling (SIR) filter
that uses systematic resampling. We allow for asynchronous
update and predict steps that are determined by when we
receive measurements from the sensors, and therefore time
steps are non-constant. In fact, every measurement has a time
stamp (the time stamps between robots are consistent due
to the clock synchronization discussed in Sec. IV-C), and
therefore we can calculate the dt between each measurement
and the next; for any set of measurements received at time t,
we define the array of time differences between consecutive
measurements as dtt. The algorithm is described in detail in
Alg. 1.

Algorithm 1 Asynchronous CL Particle Filter

1: Initialize M particles T 1
[1:M ] and weights w0

[1:M ]

2: Collect ut ← odometry and ot ← ranges
3: if ut 6= ∅ then
4: for k ← 1 to M do
5: Predict T t

[k] ← p(T t
[k]|T

t−1
[k] ,u

t,dtt,Σu)
6: end for
7: end if
8: if ot 6= ∅ then
9: for k ← 1 to M do

10: Update wt
[k] ← wt−1

[k] p(T
t
[k]|o

t,dtt, σo)

11: Normalize wt
[1:M ] ← wt

[1:M ]/
∑M

k=1 w
t
[k]

12: if 1/
∑M

k=1(wt
[k])

2 < Neff then
13: Resample(T t

[1:M ], w
t
[1:M ])

14: end if
15: end for
16: end if
17: Compute µT ←

∑M
k=1 w

t
[k]T

t
[k]

18: Compute Σ2
T ←

∑M
k=1 w

t
[k](T

t
[k] − µT )(T t

[k] − µT )T

19: Return µT ,Σ
2
T , T

t
[1:M ], w

t
[1:M ]

IV. PLATFORM OVERVIEW

A. Hardware Platform

Our cars are based off of the MIT Racecar design [5].
The main components are a Traxxas Slash 4x4 chassis and
an Nvidia Jetson TX2 on-board computer. Measurements are
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collected from a Vedder electronic speed controller (ESC),
which provides a speed estimate; a Traxxas 2075 servo,
which controls the steering angle and from which angular
velocity is derived; and two Decawave TREK1000 UWB
evaluation modules. One Decawave sensor is configured to
be an anchor, and one is configured to be a tag. The tags
can only communicate with the anchors.

B. Communication

We use an open-source ROS multi-master system called
Canopy [38]. The benefits of a multi-master system include:
• Selective message passing between ROS masters
• Vehicles can join and leave the server at will
• Communication through multiple networks

Although not tested in the following experiments, the use of
a multi-master system to route messages over the internet
would enable the cars to seamlessly exchange messages
as they switch networks (for example as a car leaves an
intersection and approaches another intersection); it would
also allow the cars themselves to host the server so that no
outside infrastructure would be necessary.

C. Clock Synchronization

Although UWBs can be used to do clock synchronization
as well as ranging [24], we used the Network Time Protocol
to synchronize the clocks on each vehicle. We did this so
that our platform can work using other range sensors besides
UWBs. We found that the clock error between vehicles
using NTP was on average 2.0 ms with 8.9 ms standard
deviation; this compares to an average delay of 84.0 ms with
a standard deviation of 71.4 ms of packets sent across the
network. Synchronized clocks allow us to use asynchronous
filters. As the filters collect measurements from each car,
each measurement comes with a time stamp. Because the
filters receives messages at a rate faster than it can process
(odometry information arrives at about 30 Hz from each car,
and range measurements arrive at about 20 Hz, meaning
that the particle filter receives around 250 measurements per
second for the five-car case), they collect odometry messages
for a short period of time (about 30 ms), then use the time
stamp of the most recent message as the approximate time
stamp for all of the messages they have collected. They store
the time stamp from the previous batch so that they can
calculate the time step between the two batches. Since range
measurements arrive at a slightly slower rate and are faster
to process (unlike for the odometry measurements, we do not
have to propagate the dynamics using Runge-Kutta), we run
a predict step every time we receive a range measurement.

V. EXPERIMENTAL EVALUATION

Our experiments were performed under realistic condi-
tions, with packet loss, communication delays, and non-
constant velocities, along with the usual measurement and
process noise. Moreover, the model cars have dynamics that
are similar to the dynamics of real cars because they have
a suspension system and Ackermann steering. Therefore,
our experimental setup includes many of the adversarial

-2 -1 0 1

x [m]

-1

0

1

2

3

y
 [

m
]

pf

ukf

ekf

(a) Two left turns

-2 -1 0 1 2

x [m]

-1

0

1

2

3

y
 [

m
]

pf

ukf

ekf

(b) Left turn and straight

-2 -1 0 1 2

x [m]

-1

0

1

2

3

y
 [

m
]

pf

ukf

ekf

(c) Both straight

-2 -1 0 1 2

x [m]

-1

0

1

2

y
 [

m
]

pf

ukf

ekf

(d) Semicircles

Fig. 4: Two Car Experiments. Ground-truth car trajectories
(blue and red) for our two car experiments and the resulting
estimates (light lines) of the blue car’s position from the
frame of the red car.

conditions that one would expect to encounter in the real
world.

We collected datasets of scenarios involving two and five
cars; all of the adversarial conditions encountered during the
recording are preserved in the recorded dataset. Odometry
data is received from each car at a rate of about 30 Hz,
and range measurements arrive at a rate of 10-20 Hz from
each car. Ground-truth was collected using a Vicon motion
capture system.

A. Two Car Experiments

Left Left Turn/ Straight Semicircle
RMSE Filter Turns Straight

Dist [m] PF 0.26 0.41 0.32 0.33
UKF 0.26 0.80 0.29 0.29
EKF 0.25 0.85 0.33 0.33

Theta [m] PF 0.11 0.17 0.08 0.15
UKF 0.10 0.27 0.03 0.03
EKF 0.09 0.28 0.02 0.08

TABLE I: RMSE distance and bearing error for the two car
tests.

We ran four different two-car experiments to test the
accuracy of localization using just a single range mea-
surement (as well as odometry measurements). We tested
four different scenarios, shown in Fig. 4. The first three
scenarios, “two left turns”, “left turn and straight”, and “both
straight”, are scenarios often encountered at intersections.
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Fig. 5: Five Car Experiment. Boxplots of the errors in
distance and heading for each filter.

The last scenario, “semicircles”, occurs at rings such as
roundabouts. In the figures, the red line is the ground-truth
trajectory of the egocar; the dark blue line is the ground-
truth trajectory of the other car; and the light lines are the
egocar’s estimates of the other car using a particle filter,
a UKF, and an EKF. The results of the experiments are
recorded in Table I. Interestingly, no single filter clearly
outperforms the others. The EKF and UKF do very poorly
on the “left turn and straight” experiment; however, they
perform about the same or better than the particle filter in
the other tests. The RMSE of the distances are in the range
of 25-81 cm, which is comparable to other work using real-
world data [39], [10], [40], [32]. However, unlike other work,
this result was achieved using just one range measurement
between two moving platforms.

B. Five Car Experiment

We ran one test with five cars in an intersection scenario;
the cars are shown in Fig. 1, and their trajectories (along
with the trajectories estimated by the UKF) are shown in
Fig. 6. Four of the cars made left turns, while one car
traveled straight across the intersection. Since we found it
to be nearly impossible for the five cars to navigate the
intersection simultaneously, we had the cars move in three
separate groups. First, the red (ego) and green cars made
left turns. Second, the pink car drove straight across the
intersection. Finally, the orange and blue cars made left turns.
As can be seen in Table II, the UKF outperforms the other
filters in estimating the relative transforms. The distribution
of errors for the filters can be seen more clearly in Fig. 5.
The UKF achieves the lowest distance error, while the EKF
achieves the lowest heading error.

RMSE Filter T21 T31 T41 T51

Dist [m] PF 0.31 0.43 0.26 0.44
UKF 0.26 0.20 0.29 0.32
EKF 0.36 0.80 0.64 0.59

Theta [rad] PF 0.22 0.20 0.24 0.38
UKF 0.20 0.18 0.17 0.16
EKF 0.14 0.18 0.29 0.34

TABLE II: Five Car Experiment. RMSE distance and head-
ing error
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Fig. 6: Five Car Experiment, showing UKF estimates.
Ground-truth trajectories are the darker lines. The estimates,
as computed from and relative to the red car are shown
in lighter colors. The starting positions are denoted by the
circles.

VI. DISCUSSION AND CONCLUSION

In this work, we considered cooperative localization based
on range measurements. We presented a new reformulation
of the relative transform between two unicycle models, and
we performed a nonlinear observability analysis that showed
that the linear velocities of the system must be non-zero
in order to achieve full observability. We incorporated our
model into an asynchronous particle filter, UKF, and EKF
that consider odometry and range information. We also
designed an experimenetal system that uses UWB radios, a
ROS multimaster system, and high performance RC cars to
approximate real-world driving scenarios. We evaluated our
framework on experiments involving two and five cars. Our
experimental results show that, despite the nonlinearity of
the measurement model, the UKF and EKF typically achieve
better results than the particle filter. In addition, the UKF and
EKF require much less computation than the particle filter.
Since the UKF outperforms the EKF, we find that the UKF
is the best filter for the task of estimating relative transforms
between cars using range measurements.

ACKNOWLEDGMENTS

The present work has received funding from Toy-
ota Research Institute within the Toyota-CSAIL joint re-
search center and Office of Naval Research grant ONR
N000141812830. The views expressed in this paper solely
reflect the opinions and conclusions of its authors and not
the funding agencies.

REFERENCES

[1] W. Schwarting, J. Alonso-Mora, and D. Rus, “Planning and decision-
making for autonomous vehicles,” Annual Review of Control, Robotics,
and Autonomous Systems, vol. 1, pp. 187–210, 2018.

[2] S. Fujii, A. Fujita, T. Umedu, S. Kaneda, H. Yamaguchi, T. Higashino,
and M. Takai, “Cooperative vehicle positioning via v2v communi-
cations and onboard sensors,” in 2011 IEEE Vehicular Technology
Conference (VTC Fall). IEEE, 2011, pp. 1–5.

1869



[3] K. Witrisal, P. Meissner, E. Leitinger, Y. Shen, C. Gustafson, F. Tufves-
son, K. Haneda, D. Dardari, A. F. Molisch, A. Conti, et al., “High-
accuracy localization for assisted living: 5g systems will turn multipath
channels from foe to friend,” IEEE Signal Processing Magazine,
vol. 33, no. 2, pp. 59–70, 2016.

[4] G.-M. Hoang, B. Denis, J. Härri, and D. T. Slock, “Cooperative
localization in gnss-aided vanets with accurate ir-uwb range mea-
surements,” in 2016 13th Workshop on Positioning, Navigation and
Communications (WPNC). IEEE, 2016, pp. 1–6.

[5] “MIT RACECAR,” https://mit-racecar.github.io/.
[6] A. Martinelli and R. Siegwart, “Observability Analysis for Mobile

Robot Localization,” in Proceedings of the International Conference
on Intelligent Robots and Systems (IROS), 2005.

[7] K. Leung, Y. Halpern, T. Barfoot, and H. Liu, “The UTIAS Multi-
Robot Cooperative Localization and mapping dataset,” The Interna-
tional Journal of Robotics Research, vol. 30, no. 8, 2011.

[8] A. K. Das, R. Fierro, V. Kumar, J. P. Ostrowski, J. Spletzer, and
C. J. Taylor, “A Vision-based Formation Control Framework,” IEEE
Transactions on Robotics and Automation, vol. 18, no. 5, 2002.

[9] A. Mourikis and S. Roumeliotis, “Performance Analysis of Multirobot
Cooperative Localization,” IEEE Transactions on Robotics, vol. 22,
no. 4, 2006.

[10] T.-K. Chang, S. Chen, and A. Mehta, “Multirobot Cooperative Lo-
calization Algorithm with Explicit Communication and its Topology
Analysis,” in Proceedings of the International Symposium on Robotics
Research (ISRR), 2017.

[11] F. Meyer, O. Hlinka, H. Wymeersch, E. Riegler, and F. Hlawatsch,
“Distributed Localization and Tracking of Mobile Networks Including
Noncooperative Objects,” Transactions on Signal and Information
Processing over Networks, vol. 2, no. 1, 2016.

[12] “Decawave,” http://www.decawave.com/, 2017, accessed: 2018-09-15.
[13] T. Schneider, M. Dymczyk, M. Fehr, K. Egger, S. Lynen, I. Gilitschen-

ski, and R. Siegwart, “Maplab: An Open Framework for Research in
Visual-Inertial Mapping and Localization,” Robotics and Automation
Letters, vol. 3, no. 3, 2018.

[14] W. Churchill and P. Newman, “Experience-based Navigation for Long-
Term Localisation,” The International Journal of Robotics Research,
vol. 32, no. 14, 2013.

[15] T. Cieslewski, S. Lynen, M. Dymczyk, S. Magnenat, and R. Siegwart,
“Map API - Scalable Decentralized Map Building for Robots,” in
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2015.

[16] M. Gadd and P. Newman, “Checkout My Map: Version Control for
Fleetwide Visual Localisation,” in Proceedings of the International
Conference on Intelligent Robots and Systems (IROS), 2016.

[17] A. Cunningham, M. Paluri, and F. Dellaert, “DDF-SAM: Fully dis-
tributed SLAM using Constrained Factor Graphs,” in Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2010.

[18] A. Martinelli, F. Pont, and R. Siegwart, “Multi-robot Localization
Using Relative Observations,” in Proceedings of the International
Conference on Robotics and Automation (ICRA), 2005.

[19] L. Luft, T. Schubert, S. Roumeliotis, and W. Burgard, “Recursive
Decentralized Collaborative Localization for Sparsely Communicating
Robots,” in Proceedings of Robotics: Science and Systems (RSS), 2016.

[20] S. Panzieri, F. Pascucci, and R. Setola, “Multirobot Localisation Using
Interlaced Extended Kalman Filter,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2006.

[21] N. Karam, F. Chausse, R. Aufrere, and R. Chapuis, “Localization of a
Group of Communicating Vehicles by State Exchange,” in Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2006.

[22] H. Li, F. Nashashibi, and M. Yang, “Split Covariance Intersection
Filter: Theory and Its Application to Vehicle Localization,” IEEE
Transactions on Intelligent Transportation Systems, vol. 14, no. 4,
2013.

[23] Q. Sun, M. Diao, Y. Zhang, and Y. Li, “Cooperative localization
algorithm for multiple mobile robot system in indoor environment
based on variance component estimation,” Symmetry, vol. 9, no. 6,
p. 94, 2017.

[24] F. Meyer, B. Etzlinger, F. Hlawatsch, and A. Springer, “A Distributed
Particle-based Belief Propagation Algorithm for Cooperative Simul-
taneous Localization and Synchronization,” in Proceedings of the
Conference on Signals, Systems and Computers, 2013.

[25] R. Olfati-Saber, “Distributed Kalman Filter with Embedded Consensus
Filters,” in Proceedings of the Conference on Decision and Control
(CDC), 2005.

[26] S. Julier and J. Uhlmann, “A Non-Divergent Estimation Algorithm
in the Presence of Unknown Correlations,” in Proceedings of the
American Control Conference (ACC), 1997.

[27] S. Cedervall and X. Hu, “Nonlinear observers for unicycle robots with
range sensors,” IEEE transactions on automatic control, vol. 52, no. 7,
2007.

[28] R. Sharma, R. W. Beard, C. N. Taylor, and S. Quebe, “Graph-
based observability analysis of bearing-only cooperative localization,”
Transactions on Robotics, vol. 28, no. 2, 2012.

[29] G. Papadopoulos, M. F. Fallon, J. J. Leonard, and N. M. Patrikalakis,
“Cooperative Localization of Marine Vehicles using Nonlinear State
Estimation,” in Proceedings of the International Conference on Intel-
ligent Robots and Systems (IROS), 2010.

[30] A. Wallar, B. Araki, R. Chang, J. Alonso-Mora, and D. Rus, “Fore-
sight: Remote Sensing for Autonomous Vehicles Using a Small
Unmanned Aerial Vehicle,” in Proceedings of the Conference on Field
and Service Robotics (FSR), 2017.

[31] B. Hepp, T. Nageli, and O. Hilliges, “Omni-directional Person Track-
ing on a Flying Robot Using Occlusion-robust ultra-wideband signals,”
in Proceedings of the International Conference on Intelligent Robots
and Systems (IROS), 2016.

[32] K. Guo, Z. Qiu, W. Meng, L. Xie, and R. Teo, “Ultra-wideband
based Cooperative Relative Localization Algorithm and Experiments
for Multiple Unmanned Aerial Vehicles in GPS Denied Environments,”
International Journal of Micro Air Vehicles, vol. 9, no. 3, 2017.

[33] A. Bahr, J. Leonard, and M. Fallon, “Cooperative Localization for Au-
tonomous Underwater Vehicles,” The International Journal of Robotics
Research, vol. 28, no. 6, 2009.

[34] A. Bahr, M. Walter, and J. Leonard, “Consistent Cooperative Local-
ization,” in Proceedings of the International Conference on Robotics
and Automation (ICRA), 2009.

[35] R. Hermann and A. Krener, “Nonlinear Controllability and Observ-
ability,” Transactions on Automatic Control, vol. 22, no. 5, 1977.

[36] H. Nijmeijer and A. van der Schaft, “Controllability and observability,
local decompositions,” in Nonlinear Dynamical Control Systems, 1990.

[37] R. Labbe, “Kalman and bayesian filters in python,”
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python,
2018.

[38] A. Wallar, “Canopy,” https://github.com/canopy-ros, 2017.
[39] B. Teague, Z. Liu, F. Meyer, and M. Z. Win, “Peregrine: 3-d network

localization and navigation,” in Communications (LATINCOM), 2017
IEEE 9th Latin-American Conference on. IEEE, 2017.

[40] A. Howard, M. J. Mataric, and G. S. Sukhatme, “Putting
the’i’in’team’: An ego-centric approach to cooperative localization,”
in Robotics and Automation, 2003. Proceedings. ICRA’03. IEEE
International Conference on, vol. 1. IEEE, 2003.

1870


